### Step 1: Define Scope and Tools #### Objective Build an MVP where users can register, get eligibility credentials, and submit anonymous opinions on a single legislative matter, with public verification. #### Tech Stack Suggestions - **Programming Language**: Python (for rapid prototyping, with libraries for crypto) or Rust (for performance and security in production). - **Cryptography Libraries**: - `py-ecc` or `circom` (for ZKPs like zk-SNARKs). - `blind-signatures` (Python) or `rsa-blind-signatures` (custom implementation). - **Public Ledger**: - Local database (e.g., SQLite) for the MVP. - Optionally, Ethereum (with a testnet like Sepolia) for blockchain integration later. - **Frontend**: Flask (Python) or a simple CLI for the MVP; React/Vue.js later for a user interface. - **Development Environment**: Docker (to containerize components), Git (version control). --- ### Step 2: Design the Core Components Break the system into modular pieces you can build and test independently: 1. **Trusted Authority Module** - **Purpose**: Issues credentials and blind signatures. - **How**: - Simulate a credential issuer with a key pair (public/private). - Implement a blind signature scheme (e.g., RSA-based). - **Starting Point**: Use `blind-signatures` in Python or code a basic RSA blind signature: ```python from blind_signatures import BlindSignature authority = BlindSignature(bits=2048) ``` 2. **Participant Module** - **Purpose**: Generates tokens, commitments, and ZKPs. - **How**: - Generate a random token and secret key per user per matter. - Create a commitment: `commitment = hash(token || secret || matter_id)` (e.g., SHA-256). - Use a ZKP library like `circom` to prove knowledge of the secret without revealing it. - **Starting Point**: Use `hashlib` for commitments: ```python import hashlib token = "random123" secret = "secret456" matter_id = "Law001" commitment = hashlib.sha256((token + secret + matter_id).encode()).hexdigest() ``` 3. **Public Ledger** - **Purpose**: Stores commitments and submissions. - **How**: Use SQLite to store `(commitment, blind_signature, matter_id)` tuples for now. - **Starting Point**: ```python import sqlite3 conn = sqlite3.connect("ledger.db") conn.execute("CREATE TABLE commitments (id INTEGER PRIMARY KEY, commitment TEXT, signature TEXT, matter_id TEXT)") ``` 4. **Verification Module** - **Purpose**: Validates submissions. - **How**: Check blind signatures and ZKPs; ensure token uniqueness. - **Starting Point**: Mock a verifier that checks `authority.verify()` output. --- ### Step 3: Build the MVP Workflow #### Workflow 1. **Setup Phase**: - User registers with the authority, gets a credential. - User generates token, secret, and commitment for a matter (e.g., "Law001"). - User blinds the commitment, gets a signature from the authority, unblinds it, and stores it in the ledger. 2. **Submission Phase**: - User submits an opinion (e.g., "Yes") with their token and a ZKP. - System verifies the ZKP and ensures the token is unused. - Opinion is recorded. #### Prototype Code (Python Example) ```python import hashlib from blind_signatures import BlindSignature # Authority setup authority = BlindSignature(bits=2048) # User setup token = "token123" secret = "secret789" matter_id = "Law001" commitment = hashlib.sha256((token + secret + matter_id).encode()).hexdigest() # Blind and sign blinded, unblinder = authority.blind(commitment) signature = authority.sign(blinded) unblinded_signature = authority.unblind(signature, unblinder) # Store in ledger import sqlite3 conn = sqlite3.connect("ledger.db") conn.execute("INSERT INTO commitments (commitment, signature, matter_id) VALUES (?, ?, ?)", (commitment, unblinded_signature, matter_id)) conn.commit() # Submission (simplified ZKP placeholder) opinion = "Yes" # In practice, generate a ZKP here with circom or similar submitted_token = token print(f"Opinion: {opinion}, Token: {submitted_token}") ``` --- ### Step 4: Add Zero-Knowledge Proofs #### Why ZKPs? They prove the token matches a commitment without revealing which one, ensuring anonymity. #### How to Start - **Tool**: Use `circom` (a ZK circuit compiler) with `snarkjs` for zk-SNARKs. - **Circuit**: Define a simple circuit to prove `hash(token, secret, matter_id) == commitment`. - **Steps**: 1. Install `circom` and `snarkjs` (via npm). 2. Write a circuit in `circom`: ```circom template CommitmentCheck() { signal input token; signal input secret; signal input matter_id; signal input commitment; signal output valid; // Simplified hash (use Poseidon or MiMC in practice) valid <== commitment === hash([token, secret, matter_id]); } ``` 3. Compile and generate a proof with `snarkjs`. 4. Verify the proof in your Python verifier. --- ### Step 5: Test and Iterate #### Test Plan - **Unit Tests**: Verify each module (authority, participant, ledger). - **Integration Test**: Run a full cycle with 5-10 mock users. - **Edge Cases**: Test duplicate submissions, invalid signatures. #### Tools - `pytest` for Python unit tests. - Manual checks via CLI output. --- ### Step 6: Next Steps Once the MVP works: - **Scalability**: Switch to a blockchain (e.g., Ethereum testnet) for the ledger. - **User Interface**: Build a Flask or React frontend. - **Efficiency**: Optimize ZKPs with zk-STARKs or precomputed trusted setups. - **Security Audit**: Review crypto implementations with an expert. --- ### Recommendations - **Start Small**: Focus on blind signatures and a basic ledger first; add ZKPs after. - **Learn by Doing**: Experiment with `circom` tutorials (e.g., on GitHub) to grasp ZKPs. - **Resources**: - “Mastering Zero-Knowledge Proofs” (online guides). - Ethereum’s zk-SNARK docs. - GitHub repos like `iden3/circom`.