232 lines
6.5 KiB
Python
232 lines
6.5 KiB
Python
"""
|
|
Main application module for VoxPop AI Analysis Service.
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from typing import Dict, List, Any, Optional
|
|
import json
|
|
from datetime import datetime
|
|
import time
|
|
|
|
from fastapi import FastAPI, BackgroundTasks, HTTPException, Query
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
from app.data_fetcher import PerspectiveFetcher
|
|
from app.analyzer import Analyzer
|
|
from app.insight_generator import InsightGenerator
|
|
from app.scheduler import AnalysisScheduler
|
|
|
|
# Set up logging
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
handlers=[
|
|
logging.StreamHandler(sys.stdout)
|
|
]
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Create app components
|
|
perspective_fetcher = PerspectiveFetcher()
|
|
analyzer = Analyzer()
|
|
insight_generator = InsightGenerator(output_dir="insights")
|
|
scheduler = AnalysisScheduler()
|
|
|
|
# Create FastAPI app
|
|
app = FastAPI(
|
|
title="VoxPop AI Analysis Service",
|
|
description="Analyzes perspectives and generates insights",
|
|
version="0.1.0"
|
|
)
|
|
|
|
# Enable CORS
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
# In-memory cache for analysis results
|
|
analysis_cache = {
|
|
"last_analysis": None,
|
|
"last_insights": None,
|
|
"timestamp": None
|
|
}
|
|
|
|
@app.on_event("startup")
|
|
async def startup_event():
|
|
"""Run when the app starts up."""
|
|
logger.info("Starting VoxPop AI Analysis Service")
|
|
|
|
# Schedule the analysis job to run hourly
|
|
scheduler.add_hourly_job(
|
|
"hourly_analysis",
|
|
perform_analysis_and_generate_insights,
|
|
run_immediately=True
|
|
)
|
|
|
|
# Also schedule a more frequent job for demo purposes
|
|
scheduler.add_minutes_job(
|
|
"demo_analysis",
|
|
perform_analysis_and_generate_insights,
|
|
minutes=15,
|
|
run_immediately=False
|
|
)
|
|
|
|
@app.on_event("shutdown")
|
|
async def shutdown_event():
|
|
"""Run when the app shuts down."""
|
|
logger.info("Shutting down VoxPop AI Analysis Service")
|
|
scheduler.shutdown()
|
|
|
|
def perform_analysis_and_generate_insights(run_immediately: bool = False) -> Dict[str, Any]:
|
|
"""
|
|
Perform analysis and generate insights.
|
|
|
|
Args:
|
|
run_immediately: Whether this is being run immediately (vs scheduled)
|
|
|
|
Returns:
|
|
Analysis results and insights
|
|
"""
|
|
logger.info(f"Starting analysis run (immediate: {run_immediately})")
|
|
|
|
# Fetch perspectives
|
|
perspectives = perspective_fetcher.fetch_perspectives()
|
|
|
|
# Analyze perspectives
|
|
analysis_results = analyzer.analyze_perspectives(perspectives)
|
|
|
|
# Generate insights
|
|
insights = insight_generator.generate_insights(analysis_results)
|
|
|
|
# Update cache
|
|
analysis_cache["last_analysis"] = analysis_results
|
|
analysis_cache["last_insights"] = insights
|
|
analysis_cache["timestamp"] = datetime.now().isoformat()
|
|
|
|
logger.info(f"Completed analysis run with {len(perspectives)} perspectives and {len(insights['insights'])} insights")
|
|
|
|
return {
|
|
"analysis": analysis_results,
|
|
"insights": insights
|
|
}
|
|
|
|
@app.get("/")
|
|
async def root():
|
|
"""Root endpoint."""
|
|
return {
|
|
"message": "VoxPop AI Analysis Service is running",
|
|
"docs": "/docs",
|
|
"status": "OK"
|
|
}
|
|
|
|
@app.get("/analyze")
|
|
async def analyze_endpoint(
|
|
hashes: Optional[List[str]] = Query(None, description="List of IPFS hashes to analyze"),
|
|
background_tasks: BackgroundTasks = None
|
|
):
|
|
"""
|
|
Analyze perspectives and generate insights.
|
|
|
|
Args:
|
|
hashes: Optional list of IPFS hashes to analyze
|
|
background_tasks: FastAPI background tasks
|
|
|
|
Returns:
|
|
Analysis results
|
|
"""
|
|
try:
|
|
if hashes:
|
|
# Analyze specific perspectives
|
|
perspectives = perspective_fetcher.fetch_perspectives(hashes)
|
|
analysis_results = analyzer.analyze_perspectives(perspectives)
|
|
|
|
# Generate insights in the background
|
|
if background_tasks:
|
|
background_tasks.add_task(
|
|
insight_generator.generate_insights,
|
|
analysis_results
|
|
)
|
|
|
|
return analysis_results
|
|
else:
|
|
# Return cached results if available and recent
|
|
if (
|
|
analysis_cache["last_analysis"]
|
|
and analysis_cache["timestamp"]
|
|
and (datetime.now() - datetime.fromisoformat(analysis_cache["timestamp"])).total_seconds() < 3600
|
|
):
|
|
return analysis_cache["last_analysis"]
|
|
|
|
# Otherwise perform new analysis
|
|
result = perform_analysis_and_generate_insights(run_immediately=True)
|
|
return result["analysis"]
|
|
except Exception as e:
|
|
logger.error(f"Error in analyze endpoint: {e}")
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.get("/insights")
|
|
async def insights_endpoint(days: int = Query(1, description="Number of days to look back")):
|
|
"""
|
|
Get consolidated insights.
|
|
|
|
Args:
|
|
days: Number of days to look back
|
|
|
|
Returns:
|
|
Consolidated insights
|
|
"""
|
|
try:
|
|
return insight_generator.get_consolidated_insights(days=days)
|
|
except Exception as e:
|
|
logger.error(f"Error in insights endpoint: {e}")
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.get("/status")
|
|
async def status_endpoint():
|
|
"""
|
|
Get service status.
|
|
|
|
Returns:
|
|
Service status information
|
|
"""
|
|
jobs = scheduler.get_jobs()
|
|
|
|
return {
|
|
"status": "OK",
|
|
"uptime": "Unknown", # Would track this in a real service
|
|
"last_analysis": analysis_cache["timestamp"],
|
|
"scheduled_jobs": jobs,
|
|
"version": "0.1.0"
|
|
}
|
|
|
|
@app.post("/run-now")
|
|
async def run_now_endpoint():
|
|
"""
|
|
Run analysis immediately.
|
|
|
|
Returns:
|
|
Success message
|
|
"""
|
|
try:
|
|
result = perform_analysis_and_generate_insights(run_immediately=True)
|
|
return {"message": "Analysis run completed", "timestamp": datetime.now().isoformat()}
|
|
except Exception as e:
|
|
logger.error(f"Error in run-now endpoint: {e}")
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
if __name__ == "__main__":
|
|
# When run directly, this will be used for local development
|
|
import uvicorn
|
|
|
|
# Create insights directory
|
|
os.makedirs("insights", exist_ok=True)
|
|
|
|
# Run the app
|
|
uvicorn.run("app.main:app", host="0.0.0.0", port=8000, reload=True) |