dsfx/pkg/handshake/handshake.go

348 lines
11 KiB
Go
Raw Normal View History

2025-03-07 21:05:37 -05:00
package handshake
import (
"crypto/ecdh"
"crypto/ecdsa"
"crypto/sha256"
"errors"
"fmt"
"io"
"net"
"koti.casa/numenor-labs/dsfx/pkg/dcrypto"
"koti.casa/numenor-labs/dsfx/pkg/encoding/vwb"
)
func debugf(msg string, args ...any) {
fmt.Printf("(debug): "+msg, args...)
}
// An Actor represents an entity that can participate in the handshake process.
// In this model, there are two actors: Alice and Bob. Alice represents the
// client role and Bob represents the server role. Each actor has a ecdsa private
// key used for identification, and a tcp address that they are reachable at.
type Actor interface {
// Identity represents the identity of the actor. It is used to sign messages
// on behalf of the actor during the handshake process. The actor may choose
// to use a well known key here in order to be recognized by other actors.
// It is also valid to return an ephemeral key here if the actor wishes to
// remain anonymous with the remote actor.
IdentityKey() *ecdsa.PrivateKey
// Address returns the address of the actor. This is used when listening for
// incoming connections, and when dialing out to other actors.
Address() *net.TCPAddr
}
// State represents the state of the handshake process. It should be passed to
// and from the various functions in the handshake process.
type State struct {
EphemeralKey *ecdh.PrivateKey
}
// InitiateHandshake initiates the handshake process between the given actor
// and the remote actor.
func InitiateHandshake(actor Actor, conn io.ReadWriter, rpub *ecdsa.PublicKey) ([]byte, error) {
// ------------------------------------------------------------------------
// Step 1: Ephemeral Key Exchange To Server
debugf("client: creating dh key\n")
// Create a new ECDH private key for the actor.
ourDHKey, err := dcrypto.GenerateDHKey()
if err != nil {
return nil, err
}
debugf("client: exporting dh key\n")
// Export the public key of the actor's ECDH private key.
ourDHKeyRaw, err := dcrypto.ExportDHPublicKey(ourDHKey.PublicKey())
if err != nil {
return nil, err
}
debugf("client: sending dh key\n")
// Write the actor's public key to the connection.
err = vwb.Encode(conn, ourDHKeyRaw)
if err != nil {
return nil, err
}
// ------------------------------------------------------------------------
// Step 2: Ephemeral Key Exchange From Server
debugf("client: waiting for server's dh key\n")
// Read the remote actor's public key from the connection.
remoteDHKeyRaw, err := vwb.Decode(conn)
if err != nil {
return nil, err
}
debugf("client: importing server's dh key\n")
// Import the remote actor's public key.
remoteDHKey, err := dcrypto.ImportDHPublicKey(remoteDHKeyRaw)
if err != nil {
return nil, err
}
// ------------------------------------------------------------------------
// Step 3: Client Authentication
debugf("client: exporting public signing key\n")
// Export the public key of the actor's signing key.
ourPublicKeyRaw, err := dcrypto.ExportPublicSigningKey(&actor.IdentityKey().PublicKey)
if err != nil {
return nil, err
}
debugf("client: exporting remote public signing key\n")
remotePublicKeyRaw, err := dcrypto.ExportPublicSigningKey(rpub)
if err != nil {
return nil, err
}
debugf("client: creating authentication message\n")
// Construct the message that will be signed by the client.
// This message is formatted as follows:
// rlt + sha256(ae + be)
// This binds both the client and server's long term public keys to the
// ephemeral keys that were exchanged in the previous step. This creates a
// verifiable link between both parties and the ephemeral keys used to
// establish the shared secret.
authMessage, err := buildMessage(ourDHKey.PublicKey(), remoteDHKey)
if err != nil {
return nil, err
}
debugf("client: signing authentication message\n")
// Sign the message with the actor's private key.
signature, err := dcrypto.Sign(actor.IdentityKey(), authMessage)
if err != nil {
return nil, err
}
debugf("client: encoding %d bytes of public key\n", len(ourPublicKeyRaw))
debugf("client: encoding %d bytes of signature\n", len(signature))
plaintext := make([]byte, 0, len(ourPublicKeyRaw)+len(signature))
plaintext = append(plaintext, ourPublicKeyRaw...)
plaintext = append(plaintext, signature...)
debugf("client: computing shared secret\n")
// Compute the shared secret between the actor and the remote actor.
sharedSecret, err := dcrypto.ComputeDHSecret(ourDHKey, remoteDHKey)
if err != nil {
return nil, err
}
debugf("client: deriving key from shared secret\n")
// Derive a key from the shared secret using HKDF.
derivedKey, err := dcrypto.Key(sharedSecret, nil)
if err != nil {
return nil, err
}
debugf("client: encrypting authentication message\n")
// Encrypt the message with the derived key.
boxedMsg, err := dcrypto.Encrypt(derivedKey, plaintext)
if err != nil {
return nil, err
}
debugf("client: sending authentication message\n")
// Write the boxed message to the connection.
err = vwb.Encode(conn, boxedMsg)
if err != nil {
return nil, err
}
// ------------------------------------------------------------------------
// Step 4: Server Authentication
debugf("client: waiting for server's authentication message\n")
// Read the authentication message from the connection.
authMessageRaw, err := vwb.Decode(conn)
if err != nil {
return nil, err
}
debugf("client: decrypting authentication message\n")
// Decrypt the authentication message with the derived key.
plaintext, err = dcrypto.Decrypt(derivedKey, authMessageRaw)
if err != nil {
return nil, err
}
debugf("client: importing server's signing key\n")
// The server authentication is just verifying the signature it created of
// the client authentication message.
remotePublicKey, err := dcrypto.ImportPublicSigningKey(remotePublicKeyRaw)
if err != nil {
return nil, err
}
debugf("client: verifying server's signature\n")
if !dcrypto.Verify(remotePublicKey, authMessage, plaintext) {
return nil, errors.New("failed to verify server's signature")
}
debugf("client: handshake complete\n")
return sharedSecret, nil
}
// AcceptHandshake accepts a handshake from the given actor and connection. It
// returns the shared secret between the actor and the remote actor.
func AcceptHandshake(actor Actor, conn io.ReadWriter) ([]byte, error) {
// ------------------------------------------------------------------------
// Step 1: Ephemeral Key Exchange From Client
debugf("server: starting handshake process\n")
// Read the remote actor's public key from the connection.
remoteDHKeyRaw, err := vwb.Decode(conn)
if err != nil {
return nil, err
}
debugf("server: importing client's dh key\n")
// Import the remote actor's public key.
remoteDHKey, err := dcrypto.ImportDHPublicKey(remoteDHKeyRaw)
if err != nil {
return nil, err
}
// ------------------------------------------------------------------------
// Step 2: Ephemeral Key Exchange To Client
debugf("server: creating dh key\n")
// Create a new ECDH private key for the actor.
ourDHKey, err := dcrypto.GenerateDHKey()
if err != nil {
return nil, err
}
debugf("server: exporting dh key\n")
// Export the public key of the actor's ECDH private key.
ourDHKeyRaw, err := dcrypto.ExportDHPublicKey(ourDHKey.PublicKey())
if err != nil {
return nil, err
}
debugf("server: sending dh key\n")
// Write the actor's public key to the connection.
err = vwb.Encode(conn, ourDHKeyRaw)
if err != nil {
return nil, err
}
// ------------------------------------------------------------------------
// Step 3: Server Authentication
debugf("server: waiting for client's authentication message\n")
// Read the authentication message from the connection.
authMessageRaw, err := vwb.Decode(conn)
if err != nil {
return nil, err
}
debugf("server: computing shared secret\n")
// Decrypt the authentication message with the derived key.
sharedSecret, err := dcrypto.ComputeDHSecret(ourDHKey, remoteDHKey)
if err != nil {
return nil, err
}
debugf("server: deriving key from shared secret\n")
// Derive a key from the shared secret using HKDF.
derivedKey, err := dcrypto.Key(sharedSecret, nil)
if err != nil {
return nil, err
}
debugf("server: decrypting authentication message\n")
plaintext, err := dcrypto.Decrypt(derivedKey, authMessageRaw)
if err != nil {
return nil, err
}
clientPublicKeyRaw := plaintext[:222]
signature := plaintext[222:]
debugf("server: importing client's public signing key\n")
// Verify the client's public key and signature.
clientPublicKey, err := dcrypto.ImportPublicSigningKey(clientPublicKeyRaw)
if err != nil {
return nil, err
}
debugf("server: verifying client's signature\n")
// Construct the message that was signed by the client.
// This message is formatted as follows:
// rlt + sha256(ae + be)
// This binds both the client and server's long term public keys to the
// ephemeral keys that were exchanged in the previous step. This creates a
// verifiable link between both parties and the ephemeral keys used to
// establish the shared secret.
authMessage, err := buildMessage(remoteDHKey, ourDHKey.PublicKey())
if err != nil {
return nil, err
}
if !dcrypto.Verify(clientPublicKey, authMessage, signature) {
return nil, errors.New("failed to verify client's signature")
}
debugf("server: creating authentication message\n")
// Now we need to sign the authentication message with the server's private
// key. This will be sent back to the client in the next step to authenticate
// the server to the client.
serverSignature, err := dcrypto.Sign(actor.IdentityKey(), authMessage)
if err != nil {
return nil, err
}
boxedMsg, err := dcrypto.Encrypt(derivedKey, serverSignature)
if err != nil {
return nil, err
}
debugf("server: sending authentication message\n")
// Send the server's signature back to the client.
err = vwb.Encode(conn, boxedMsg)
if err != nil {
return nil, err
}
// ------------------------------------------------------------------------
// Step 4: Client Authentication
debugf("server: handshake complete\n")
return sharedSecret, nil
}
func buildMessage(clientPubKey *ecdh.PublicKey, serverPubKey *ecdh.PublicKey) ([]byte, error) {
clientPubKeyRaw, err := dcrypto.ExportDHPublicKey(clientPubKey)
if err != nil {
return nil, err
}
serverPubKeyRaw, err := dcrypto.ExportDHPublicKey(serverPubKey)
if err != nil {
return nil, err
}
// Construct the message that will be signed by the client.
// This message is formatted as follows:
// rlt + sha256(ae + be)
// This binds both the client and server's long term public keys to the
// ephemeral keys that were exchanged in the previous step. This creates a
// verifiable link between both parties and the ephemeral keys used to
// establish the shared secret.
message := make([]byte, 0, len(clientPubKeyRaw)+len(serverPubKeyRaw))
message = append(message, clientPubKeyRaw...)
message = append(message, serverPubKeyRaw...)
messageChecksum := sha256.Sum256(message)
authMessage := make([]byte, 0, len(serverPubKeyRaw)+sha256.Size)
authMessage = append(authMessage, serverPubKeyRaw...)
authMessage = append(authMessage, messageChecksum[:]...)
return authMessage, nil
}